
14 PERVASIVE computing Published by the IEEE CS n 1536-1268/15/$31.00 © 2015 IEEE

Smartphones
Editor: Nayeem Islam n Qualcomm n nayeem.islam@gmail.com

W eb browsers are our main win-
dow into the wealth of infor-

mation available on the Internet. All
consumer computing platforms,
including smartphones and tablets,
rely on a browser to provide news,
entertainment, and services. We use the
term Web apps to refer to applications
designed and implemented using Web
technologies. Some Web apps require
users to launch their Web browsers,
while others appear to the user as
native applications, even though they
are just an API layer on top of a browser
engine. Using Web technologies as the
application back end is a convenient
way of building portable applications
across a variety of platforms.

However, this presents two main
challenges. First, browsers must pro-
vide a smooth user experience—fast
page load, satisfactory scroll and zoom
performance, and uniform behavior
regardless of the underlying hardware.
The browsers’ JavaScript engines thus
must provide close-to-native applica-
tion performance. The second challenge
is that when running on mobile devices,
browsers must adapt to the related
energy and connectivity constraints.

As a result, browsers have been evolv-
ing to exploit the underlying hardware.
Most current smartphones and tablets
have systems on a chip (SoCs), with
two to eight cores and powerful GPUs,
and they rely on a plethora of tech-
niques to maximize the performance/
power ratio. Such techniques include

power and clock gating, dynamic volt-
age and frequency scaling, and offload-
ing work to specialized cores. On the
network side, Long-Term Evolution
(LTE) offers 100 Mbps bandwidth, yet
network latency continues to be high.
Web browsers must exploit all avail-
able capabilities to address perfor-
mance and energy challenges.

Here, we focus in particular on how
Web browsers can use concurrency
to improve per-tab (or per-page) pro-
cessing. We use the Zoomm browser
engine1 and its MuscalietJS JavaScript
engine2 to illustrate how parallel pro-
cessing improves performance and
hides network latency for faster page
loads.

ExPloItIng ConCurrEnCy
Desktop browsers, such as WebKit
(www.webkit.org) and Firefox (www.
mozilla.org/firefox), typically exploit
multiple cores by running each tab
as a separate collection of processes
and relying on the OS scheduler to
place processes on different cores.
The Zoomm browser architecture was
designed with a different goal: take
advantage of multicore processing for
each browser tab. This is in line with
typical mobile device usage, and it lets
a more constrained platform meet its
performance and energy goals.

A Parallel Browser Architecture
A Web browser has several major
components: parsers (HTML, CSS,

JavaScript) that create the Document
Object Model (DOM), a Cascading
Style Sheets (CSS) engine to format and
style the DOM, a layout engine to pro-
duce the image that will be displayed to
the user, a rendering engine to display the
page, and a JavaScript engine to enable
interactivity and dynamic behavior.

Figure 1 shows the breakdown of
execution time by component, exclud-
ing the network time. Our measure-
ments, similar to other work,3 show
that the network time is 30–50 per-
cent of the total execution time. As the
Web evolves, we’re seeing remarkable
changes in complexity and dynamic
behavior. For example, in 2010, Leo
Meyerovich and Rastislav Bodík mea-
sured WebKit execution and observed
that JavaScript took approximately 5
percent of the execution time.4 One
year later, the fraction of JavaScript
execution increased to 30 percent,
and for most webpages, it has since
plateaued.

Even more significantly, we’re
observing a major trend to support
application development using Web
technologies such as HTML5, CSS,
and JavaScript. Given this breakdown
of computation, it is clear that to opti-
mize the browser execution using con-
current processing, all major compo-
nents must be addressed, because the
gains from optimizing the components
in isolation are bounded.

Our goal is to exploit concurrency
at multiple levels: parallel algorithms

Concurrency in Mobile Browser
Engines
Cǎlin Caşcaval, Pablo Montesinos Ortego, Behnam Robatmili, and Darío Suárez
Gracia, Qualcomm Research Silicon Valley

Authorized licensed use limited to: GOOGLE. Downloaded on August 05,2024 at 04:22:30 UTC from IEEE Xplore. Restrictions apply.

july–sEptEmbEr 2015 PERVASIVE computing 15

for individual passes to speed up the
processing of each component, and
overlapping of passes to speed up the
total execution time. In addition, we
must respect the HTML and JavaScript
semantics, even during concurrent exe-
cution. The main data structure used
by all browser passes is the DOM. The
DOM is a tree representing all HTML
elements, including their content, rela-
tionships, styles, and positions. Web
programmers use JavaScript to manip-
ulate the DOM, producing interactive
webpages and Web apps. Most com-
munication between browser passes
and components happens through the
DOM. Unfortunately, even in a con-
current browser, access to the DOM
tree (constructed by the HTML5
parser) must be serialized to conform
to the HTML5 specification (see http://
whatwg.org/html).

This is the biggest limitation Zoomm
must contend with, and it significantly
influenced the design. In our architec-
ture, we manage access to the DOM
through a dispatcher. Most passes
have their own private concurrent data
structures to allow for greater paral-
lelism inside components, and they
send asynchronous DOM updates to
the dispatcher for processing. Figure 2
shows the architecture’s high-level com-
ponents, discussed in more detail next.

Zoomm Browser Components
The Zoomm browser consists of a num-
ber of loosely coupled subsystems, all of
which were designed with concurrency
in mind. With the exception of the
browser global resource manager and
the rendering engine, all subsystems are
instantiated once for each page (shown
as a separate tab in the user interface).

Resource manager. The resource man-
ager is responsible for managing and
preprocessing all network resources,
including fetching resources from the
network, providing cache management
for fetched resources, and notifying
other browser components when data
from the network arrives.

In our first implementation, all
resources are fetched in the order in
which they appear, without imposing
any priorities. In addition, the resource
manager includes other components,
such as the HTML prescanner and
image decoder. The HTML prescan-
ner quickly determines all external
resources in an HTML document,
requests their downloading, and,
depending on the type of resources,
requests further processing. The image
decoder component consists of a thread
pool that decodes images for later use
as the resource manager receives them.
These operations are fully concurrent,
because each image decode is an inde-
pendent task.

DOM engine. In Zoomm, each page (tab)
instantiates a DOM engine that consists
of the DOM dispatcher, HTML parser,
CSS parsing and styling, and timers and
events. The DOM dispatcher thread
schedules DOM updates and serves as
the page event loop. It serializes access
to the DOM and manages the interac-
tion between components.

The rest of the browser infrastructure
dispatches work items to the concurrent
DOM dispatcher queue, and the items
are then handled one at a time. Work
items represent browser passes as well
as events from timers and the user inter-
face. The HTML parser receives incom-
ing (partial) data chunks for an HTML
document via a DOM dispatcher work
item and constructs the DOM tree
by executing the HTML5 parsing
algorithm. The parser adds external
resources (referenced from the HTML
document) to the resource manager’s
fetch queue. The parser also initiates
the execution of JavaScript code by call-
ing the JavaScript engine at appropriate
times during parsing. The CSS engine
calculates the look and feel of the DOM
elements for the later layout and render-
ing stages. Similar to image decoding,
the resource manager hands off CSS
stylesheets to the CSS engine for pars-
ing and for discovering new resources
to request.

Rendering engine. Whenever the DOM
or CSS stylesheets change—because
the fetcher delivered new resources, the
HTML parser updated the DOM, or as
a result of JavaScript computations—
this change needs to be reflected on the
screen so that the user can view and
interact with it. The layout engine is
responsible for transforming the styled
DOM tree into geometry and content,
which the rendering engine can turn
into a bitmap. Ultimately, this bitmap
is displayed on the screen by the user
interface as a viewable webpage. Nor-
mally, the layout and rendering engine
takes a snapshot of the DOM informa-
tion it needs and performs the rest of the
work asynchronously; however, it can
also be invoked synchronously when
JavaScript use APIs that query layout
information.

JavaScript engine. The Zoomm employs
a novel JavaScript engine, MuscalietJS,
for executing all JavaScript code. The
engine’s design is presented in detail
elsewhere (http://github.com/mcjs/mcjs.
git).2 In particular, our engine exploits
concurrency by compiling multiple
scripts in parallel, as well as compiling
scripts asynchronously with the rest of
the browser passes.

Others
Parsing

Rendering

19%
4%

5%

20%

21%

31%

JavaScriptLayout

CSS

Figure 1. Browser processing times by
component, excluding network load
time. Profiling results obtained using
the WebKit browser on a four-way ARM
Cortex-A9 processor. Results are an
aggregate of the top Alexa 30 sites as of
March 2010.

Authorized licensed use limited to: GOOGLE. Downloaded on August 05,2024 at 04:22:30 UTC from IEEE Xplore. Restrictions apply.

16 PERVASIVE computing www.computer.org/pervasive

SmartPhoneS

SmartPhoneS

To achieve this, the JavaScript engine
uses a thread pool and the just-in-time
compiler uses a separate state stored
in the metadata of each script. Due to
JavaScript semantics, the execution of
scripts is performed sequentially in the
main engine thread. When the HTML
parser or DOM dispatcher (for exam-
ple, for user interface events) requests
the execution of a JavaScript script that
has not been compiled already, com-
pilation is initiated. In either case, the
engine waits for the compiled result and
then executes the script. The goal of the
engine is to use available resources on
the platform to improve the generated
code for JavaScript execution.

Similar to other modern JavaScript
engines, MuscalietJS is a multitier

execution engine. When the number
of times a function has been executed
exceeds a certain threshold (in other
words, it’s “hot”), the engine will pro-
mote the function and recompile it at
a higher optimization tier. Different
tiers include an interpreter, a baseline
compiler, and a full compiler. The
baseline compiler generates suboptimal
code quickly. The full compiler, on the
other hand, generates more optimized
code for hot functions by performing
adaptive JavaScript-specific optimiza-
tions, including hidden classes, prop-
erty lookup, type specialization, and
restricted dataflow analysis.

User interface. The Zoomm browser
is implemented in platform-agnostic

C++. For concurrency, we use a custom
asynchronous task library (Qualcomm
Multicore Asynchronous Runtime Envi-
ronment; http://developer.qualcomm.
com/mare), optimized for mobile execu-
tion. On Android, a thin Java wrapper
is used to create the user interface. User
interactions, such as touching a link
on the display, are translated into Java
Native Interface method calls, which
ultimately create work items in the
DOM dispatcher. Drawing to the dis-
play is performed using the Android
Native Development Kit, which pro-
vides direct access to Android bitmaps.
On Linux and Mac OS X, a similar
wrapper is implemented in C++ using
the Qt interface toolkit (www.qt.io/
developers). Although our deployment

User interface

Per-page Document Object Model (DOM) engine

Rendering engine

Resource manager

Per-page JavaScript engine

Prefetching HTML parsing

Timers CSS parsing

StylingEvents

Layout Render

Image decoding

CSS parsing

JavaScript code Layout tree

HTML code

EventsURL

JavaScript code

Execution Compilation

Figure 2. The Zoomm browser architecture. Concurrency is exploited both across components and within each component.

Authorized licensed use limited to: GOOGLE. Downloaded on August 05,2024 at 04:22:30 UTC from IEEE Xplore. Restrictions apply.

july–sEptEmbEr 2015 PERVASIVE computing 17

SmartPhoneS

targets are Android devices, the Qt
implementation allows much easier
debugging and testing on desktop-
based machines, and the ability to eval-
uate concurrency beyond what Android
devices currently offer.

ParallEl ExECutIon for
rESourCE PrEfEtChIng
Mobile devices commonly experi-
ence high latency when requesting the
resources that form an HTML docu-
ment. To reduce the overall time taken
to load a page, fetching all of the depen-
dencies from the network as early as
possible is very important.

HTML Prescanning
Due to idiosyncrasies in the HTML5
specification, the HTML5 parser must
wait for <script> blocks to finish execut-
ing before it can continue parsing. So,
if a webpage references an external
resource after a script element, fetching
the resource can’t be overlapped with
the waiting. This could delay the com-
pletion of page loading.

The Mozilla Firefox browser miti-
gates such situations by speculatively
parsing ahead of script blocks to dis-
cover new resources. (It might then
be forced to throw away some of that
work if, for example, JavaScript inserts
new content into the DOM tree via the

document.write() API.) Once resources are
discovered, network latency can be
masked by requesting multiple resources
to be fetched in parallel. This strategy
also helps use all available bandwidth,
and it reduces the overall time spent
waiting for resources to arrive.

In Zoomm, we favor concurrency
to achieve the same goal by running
an HTML prescanning component
in parallel with a (nonspeculative)
HTML parser. The main objective of
the HTML prescanner is to quickly
determine all external resources in an
HTML document and trigger their
fetching from the network. The most
commonly referenced resources are
images, CSS stylesheets, and Java-
Script sources. In addition, stylesheets
and JavaScript sources can themselves
reference further external resources.
Furthermore, the prescanner obtains
all id, class, and style attributes used in the
document.

As network packets of an HTML
document arrive, they are given to
the prescanner and the actual HTML
parser independently. The prescanner
can run ahead of the HTML parser
because it only has to approximately
parse HTML to find resources, thus
skipping the complex DOM tree con-
struction phase. More importantly,
the prescanner doesn’t have to wait

for the execution of <script> blocks to
finish.

The processing of prefetched
resources works as follows. Images
are fetched concurrently with the rest
of the page processing. Once down-
loaded, image data is given to a thread
pool for decoding concurrently. The
decoded image is added to the DOM
dispatcher queue, which updates the
corresponding img tree node. Then the
image is removed from the set of pend-
ing images.

CSS Prefetching
CSS stylesheets are dispatched to a
thread pool responsible for parsing
CSS concurrently. If a CSS rule con-
tains additional external resources,
the parser decides whether to initiate
prefetching for them, based on the like-
lihood that they’re actually referenced
in the HTML document.

It’s crucial to download just enough
of the referenced resources. Down-
loading too little means that new
resources are discovered only when
styling the DOM tree later on, which
incurs additional latency penalties. It’s
common practice among websites to
reference many more resources than
are actually needed for any given doc-
ument—for example, by using a site-
wide common style file. Downloading

TABLE 1
Combined HTML and CSS prefetching initiates the download of most external resources ahead of their discovery by the HTML

and CSS parsers with high accuracy (“correct prefetch”) and small error (“missed/mistaken prefetch”). “Total resources” denotes
the number of referenced resources in a webpage.

Website*

Correct prefetch

Missed prefetch

Mistaken prefetch

total resourceshtMl CSS htMl CSS

files Bytes files Bytes files Bytes files Bytes files Bytes files Bytes

cnn.com 34 979,695 52 409,377 2 372 0 0 5 3,371 93 1,392,815

bbc.co.uk/news 54 610,479 24 407,819 16 468,371 0 0 1 1,277 95 1,487,946

yahoo.com 44 672,595 13 264,603 2 2,016 1 0 0 0 60 939,214

guardian.co.uk 49 1,018,738 14 92,997 7 102,087 1 0 3 11,305 74 1,225,127

nytimes.com 73 1,046,636 9 73,487 13 228,162 1 10,837 1 89 97 1,359,211

engadget.com 128 2,023,135 84 651,030 5 104,320 0 0 9 34,824 226 2,813,309

qq.com 45 485,264 22 167,078 7 39,361 0 0 0 0 74 691,703

*The websites are from the Vellamo benchmark.

Authorized licensed use limited to: GOOGLE. Downloaded on August 05,2024 at 04:22:30 UTC from IEEE Xplore. Restrictions apply.

18 PERVASIVE computing www.computer.org/pervasive

SmartPhoneS

SmartPhoneS

all resources invariably consumes too
much bandwidth and slows down
page loading.

In Zoomm, the CSS parser employs
the id and class attributes discovered by
the HTML prescanner to determine
if a rule is likely to be matched. If all
attribute values referenced in a CSS
rule selector have been seen by the
HTML prescanner, we assume that the
rule will match at least one DOM tree
element and initiate downloading its
resources. This heuristic is simple but
effective (see Table 1). Note that wrong
decisions don’t affect correctness; any
missed resources will be discovered
during the styling phase, at the cost of
additional latency.

Table 1 shows the number of
resources that are successfully
requested by the prefetching stage,
and the number of resources are
missed due to use of JavaScript. Note
that resources would also count as
“missed” if the prefetching algorithms
would fall behind the actual HTML
and CSS parsers. However, this was
never the case in all our experiments.
The prefetching components were

always fast enough to finish much ear-
lier than the parsers.

Despite the heuristic nature of some
of the prefetching decisions, they’re
quite accurate. In our experiments,
80–95 percent of all externally refer-
enced resources in a document were
prefetched correctly, with only a small
error rate. Due to bandwidth and power
considerations, our heuristics were still
conservative—that is, they tend to
prefetch too little rather than too much.
The “missed prefetch” (not prefetched,
but needed for rendering the webpage)
numbers were higher than “mistaken
prefetch” (prefetched, but not needed
for rendering) numbers.

JavaSCrIPt ParallEl
ProCESSIng
In modern pages, a significant number
of resources (style sheets, images, and
other scripts) are dynamically con-
structed using JavaScript. It’s advanta-
geous to discover these resources ahead
of time, such that their download
doesn’t block the page load. HTML5
introduces two attributes for scripts:
async and defer to allow out-of-order

processing of scripts. When the HTML
parser encounters one of these attri-
butes, it can farm out its compilation
and execution to the JavaScript engine
immediately. MuscalietJS takes advan-
tage of the asynchronous semantics and
compiles and executes these scripts in
parallel.

Another technique for exploiting
multicore processing for JavaScript is
parallel compilation. Almost all cur-
rent browsers use parallel compilation
to either compile multiple scripts con-
currently or run an enhanced compiler
in a separate thread.5–7

Overall, using these parallelization
techniques, Zoomm loads pages about
twice as fast as WebKit, as shown in
Figure 3.

E xploiting parallelism in browsers
promises performance and power

savings. We believe that Zoomm is
just a first step in that direction, and
hiding network latency using ahead-
of-time processing removes a bottle-
neck in loading webpages that is
beyond the control of browser clients,
thus improving the user experience.
Optimizations explored in Zoomm
and the MuscalietJS engine are being
adopted by commercial browsers:
the Mozilla Servo project (https://
github.com/servo/servo) is using a
parallel language (RUST) to imple-
ment a concurrent browser architec-
ture similar to Zoomm’s. That project
puts a larger emphasis on the layout
engine to handle all the corner cases
of the HTML5 specification, which
presents a significant challenge and
opportunity.

Browsers such as Chrome and Inter-
net Explorer are implementing paral-
lel JavaScript processing, and recently
Chrome has decoupled JavaScript pars-
ing into a concurrent thread.5 Other
researchers are looking at architectural
aspects of enabling more concurrency
in the browser.

Finally, Web standards are evolving
to allow webpage designers to exploit

14,000,000

User experience threshold

12,000,000

10,000,000

8,000,000

Ti
m

e
(u

 s)

6,000,000

4,000,000

2,000,000

0

Huffi
ng

ton

BBC New
s

Th
e S

tre
et

CNN M
on

ey
BARD

MSNBC
Fli

ck
r
Ya

ho
o

Goo
gle MSN

NY Ti
mes

Wiki

Amaz
on

eB
ay

Zoomm no JavaScript

Zoomm

WebKit

WebKit no JavaScript

Figure 3. Page load time for several popular sites. Note that users typically expect
pages to load in less than 3 seconds.

Authorized licensed use limited to: GOOGLE. Downloaded on August 05,2024 at 04:22:30 UTC from IEEE Xplore. Restrictions apply.

july–sEptEmbEr 2015 PERVASIVE computing 19

SmartPhoneS

concurrency. These include asynchro-
nous and deferred script processing
directives in HTML, Web workers, and
several efforts to express concurrency in
JavaScript. In addition, the declarative
nature of CSS makes it ripe for exploit-
ing parallelism through concurrent
implementations.

ACKNoWLEdgMENTS

We thank Nayeem Islam and the Qualcomm

research Executive team for the opportunity to

build the Zoomm and muscalietjs engines. We

thank mehrdad reshadi, michael Weber, Wayne

piekarski, seth Fowler, Vrajesh bhavsar, Alex shye,

and madhukar Kedlaya for their contributions.

REFERENCES

 1. C. Caşcaval et al., “ZOOMM: A Parallel
Web Browser Engine for Multicore Mobile
Devices,” Proc. 18th ACM SIGPLAN
Symp. Principles and Practice of Parallel
Programming (PPoPP), 2013, pp. 271–280.

 2. B. Robatmili et al., “MuscalietJS:
Rethinking Layered Dynamic Web Run-
times,” Proc. 10th ACM SIGPLAN/

SIGOPS Int’l Conf. Virtual Execution
Environments (VEE), 2014, pp. 77–88.

 3. Z. Wang et al., “Why Are Web Browsers
Slow on Smartphones?” Proc. ACM Int’l
Workshop on Mobile Computing Sys-
tems and Applications, 2011, pp. 91–96.

 4. L.A. Meyerovich and R. Bodík, “Fast
and Parallel Webpage Layout,” Proc.
Int’l Conf. World Wide Web, 2010,
pp. 711–720.

 5. M. Hölttä and D. Vogelheim, “New
JavaScript Techniques for Rapid Page
Loads,” blog, 18 Mar. 2015; http://blog.
chromium.org/2015/03/new-javascript-
techniques-for-rapid.html.

 6. J.-D. Dalton, G. Seth, and L. Lafre-
niere, “Announcing Key Advances to
Javascript Performance in Windows
10 Technical Preview,” blog, Oct.
2014; http://blogs.msdn.com/b/ie/
archive/2014/10/09/announcing-
key-advances-to-javascript-perfor-
mance-in-windows-10-technical-
preview.aspx.

 7. J. Ha et al., “A Concurrent Trace-Based
Just-in-Time Compiler for Single-
Threaded JavaScript,” Workshop on
Parallel Execution of Sequential Pro-
grams on Multi-Core Architectures
(PESPMA), 2009, pp. 47–54.

Cǎlin Caşcaval is a senior

director at Qualcomm

research silicon Valley.

Contact him at cascaval@

qti.qualcomm.com.

Pablo Montesinos ortego

is a senior staff engineer/

manager at Qualcomm re -

search silicon Valley. Con-

tact him at pablom@qti.

qualcomm.com.

Behnam robatmili is a

staff research engineer at

Qualcomm research sili-

con Valley. Contact him at

behnamr@qti.qualcomm.

com.

Darío Suárez gracia is a

staff engineer at Qualcomm

research silicon Valley.

 Contact him at dgracia@qti.

qualcomm.com.

IEEE Pervasive Computing explores the many facets of pervasive and ubiquitous
computing with research articles, case studies, product reviews, conference reports,

departments covering wearable and mobile technologies, and much more.

Keep abreast of rapid technology change by subscribing today!

www.computer.org/pervasive

Authorized licensed use limited to: GOOGLE. Downloaded on August 05,2024 at 04:22:30 UTC from IEEE Xplore. Restrictions apply.

